4,601 research outputs found

    Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals

    No full text

    Two Boats, Three Summers, Five Universities, One Dozen Instructors, and Sixty-Five Teachers: A Collaborative Oceanography Field Program for Earth Science

    Get PDF
    A three-day field workshop was an integral component of the graduate-level course entitled, Oceanography, that was offered by Virginia Earth Science Collaborative Project (VESC) to help Virginia educators earn the earth science teaching endorsement. The VESC partner institutions that offered Oceanographngeorge Mason University, James Madison University, the University of Virginia Southwest Center, and Virginia Commonwealth University-lacked direct access to research and education facilities en the coast. The College of William & Mary, another VESC partner, provided this resource through the Virginia Institute of Marine Science’s (VIMS) Eastern Shore Laboratory in Wachapreague, Virginia. The field program agenda and activities were developed and conducted by a team comprised of VESC oceanography faculty, Virginia Sea Grant educators, and a scientist from VIMS. This collaboration resulted in a program design used as the basis for six workshops conducted over three summers. Seventy-nine Virginia middle school and high school science teachers took part in the six workshops, conducted in July of 2005, 2006, and 2007. This article describes the workshop activities and provides perspectives on its design and implementation from the viewpoints of Virginia Sea Grant educators who served as field instructors

    CO2 lasers in the management of potentially malignant and malignant oral disorders

    Get PDF
    The CO2 laser was invented in 1963 by Kumar Patel. Since the early 1970s, CO2 laser has proved to be an effective method of treatment for patients with several types of oral lesions, including early squamous cell carcinoma. Laser surgery of oral premalignant disorders is an effective tool in a complete management strategy which includes careful clinical follow-up, patient education to eliminate risk factors, reporting and biopsying of suspicious lesions and any other significant lesions. However, in a number of patients, recurrence and progression to malignancy remains a risk. CO2 laser resection has become the preferred treatment for small oral and oropharyngeal carcinomas. Laser resection does not require reconstructive surgery. There is minimal scarring and thus, optimum functional results can be expected. New and improved applications of laser surgery in the treatment of oral and maxillofacial/head and neck disorders are being explored. As more surgeons become experienced in the use of lasers and as our knowledge of the capabilities and advantages of this tool expands, lasers may play a significant role in the management of different pathologies

    Development of a heterogeneous laminating resin system

    Get PDF
    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions

    Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond

    Full text link
    The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV center's spin state typically require averaging over many cycles to overcome noise. Here, we review several approaches to improve the readout performance and highlight future avenues of research that could enable single-shot electron-spin readout at room temperature.Comment: 21 pages, 7 figure

    Outlook for Western Civilization

    Get PDF
    What I want to bring out in the first place is time in terms of con­trol of the time table, and not time as distinct from space in terms of civilization

    Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds using All-Optical Charge Readout

    Full text link
    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in-vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds, each hosting 10-15 NV centers with an average diameter of 40 nm, uncovers complex, multiple-timescale dynamics due to radiative and non-radiative ionization and recombination processes. Nonetheless, the nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T1T_1 relaxometry measurement by a factor of five.Comment: 13 pages, 14 figure

    Process feasibility study in support of silicon material task 1

    Get PDF
    Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials
    corecore